Biotic and abiotic effects on CO2 sequestration during microbially-induced calcium carbonate precipitation.
نویسندگان
چکیده
In this study, CO2 sequestration was investigated through the microbially-induced calcium carbonate precipitation (MICP) process with isolates obtained from a cave called 'Cave Without A Name' (Boerne, TX, USA) and the Pamukkale travertines (Denizli, Turkey). The majority of the bacterial isolates obtained from these habitats belonged to the genera Sporosarcina, Brevundimonas, Sphingobacterium and Acinetobacter. The isolates were investigated for their capability to precipitate calcium carbonate and sequester CO2. Biotic and abiotic effects of CO2 sequestration during MICP were also investigated. In the biotic effect, we observed that the rate and concentration of CO2 sequestered was dependent on the species or strains. The main abiotic factors affecting CO2 sequestration during MICP were the pH and medium components. The increase in pH led to enhanced CO2 sequestration by the growth medium. The growth medium components, on the other hand, were shown to affect both the urease activity and CO2 sequestration. Through the Plackett-Burman experimental design, the most important growth medium component involved in CO2 sequestration was determined to be urea. The optimized medium composition by the Plackett-Burman design for each isolate led to a statistically significant increase, of up to 148.9%, in CO2 uptake through calcification mechanisms.
منابع مشابه
Biomineralization of calcium carbonates and their engineered applications: a review
Microbially induced calcium carbonate precipitation (MICCP) is a naturally occurring biological process in which microbes produce inorganic materials as part of their basic metabolic activities. This technology has been widely explored and promising with potential in various technical applications. In the present review, the detailed mechanism of production of calcium carbonate biominerals by u...
متن کاملEnvironmental parameters conditioning microbially induced mineralization under the experimental model conditions.
Microbially induced calcium carbonate precipitation is one of the biomineralization types closely dependent on the parameters of the microenvironment. Minerals are precipitated as a product of environmental and bacterial cell interactions, however, this system has very little control via microorganisms. The aim of research was to determine the influence of abiotic factors (pH, temperature, agit...
متن کاملApplication of calcifying bacteria for remediation of stones and cultural heritages
Since ages, architects and artists worldwide have focused on usage of durable stones as marble and limestone for construction of beautiful and magnificent historic monuments as European Cathedrals, Roman, and Greek temples, Taj Mahal etc. But survival of these irreplaceable cultural and historical assets is in question these days due to their degradation and deterioration caused by number of bi...
متن کاملFormations of calcium carbonate minerals by bacteria and its multiple applications
Biomineralization is a naturally occurring process in living organisms. In this review, we discuss microbially induced calcium carbonate precipitation (MICP) in detail. In the MICP process, urease plays a major role in urea hydrolysis by a wide variety of microorganisms capable of producing high levels of urease. We also elaborate on the different polymorphs and the role of calcium in the forma...
متن کاملMicrobially induced calcite precipitation-based sequestration of strontium by Sporosarcina pasteurii WJ-2.
Contamination by radioactive strontium ((90)Sr) is a significant environmental problem. Ureolytically driven calcium carbonate precipitation has been proposed for use in geotechnical engineering for soil remediation applications. In this study, 68 ureolytic bacterial strains were newly isolated from various environments. Of these, 19 strains were selected based on ureolytic activity shown when ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS microbiology ecology
دوره 91 3 شماره
صفحات -
تاریخ انتشار 2015